4 research outputs found

    GETsoft: am Anfang eines "Bildungsnetzwerks der Zukunft"?

    Full text link
    Der vorliegende Artikel stellt die Einsatzmöglichkeiten von neuen Medien in der elektrotechnischen Grundlagenausbildung vor. Es werden allgemeine Lösungsansätze für ingenieurtechnische Herausforderungen beim Einsatz von E-Learning in der Lehre in konkreten Konzepten und Produkten präsentiert. Es werden nachhaltige Entwicklungen und die Anwendungsmöglichkeiten von Kooperationen in einem transnationalen Netzwerk gezeigt. Beispiele aus dem Hochschulalltag veranschaulichen die umgesetzten Konzepte und Ideen und geben neue Impulse für Verbesserungen des Lernens und Lehrens entsprechend den technischen Möglichkeiten. Didaktische und organisatorische Überlegungen bei der Nutzung von kooperativen Lernumgebungen und wieder verwendbaren Lernobjekten spiegeln das aktuelle Bild der E-Learning Diskussion wieder. Im praktischen Einsatz spielen die Entwicklungen im Community Building, von webbasierten Testen und Auswerten sowie der intelligenten Lernerunterstützung eine bedeutende Rolle. (DIPF/Orig.

    Konzeption, Entwicklung und Organisation einer webbasierten Lernumgebung für die ingenieur-technische Ausbildung am Beispiel Grundlagen der Elektrotechnik

    Get PDF
    In der vorliegenden Arbeit wird ein systematisches und durchgängiges Prozess- und Vorgehensmodell zur Entwicklung von webbasierten Lernumgebungen mit Fokus auf die Ingenieurwissenschaften beschrieben. In diesem Rahmen werden die Konzeption, Erstellung, Verarbeitung und Verwaltung von Lernobjekten mit einem Datenbankmanagementsystems nach dem LOM-Standard eingebettet. Die Arbeit lässt sich dabei in die Reihe der Forschungen am Fachgebiet Grundlagen der Elektrotechnik zu multimedialen und webbasierten Lernumgebungen einordnen. Am Beispiel GETsoft werden konkrete Problemstellungen bei der Umsetzung von Komponenten einer Lernumgebung aufgezeigt und fachspezifische Lösungsmodelle angeboten. Die Motivation und Zielsetzung, die Einordnung der Arbeit und die Vorgehensweise sowie eine Analyse von geleisteten Vorarbeiten sind im ersten Kapitel dargestellt. Neben einer umfassenden Analyse von Lernumgebungen in ingenieur-wissenschaftlichen Disziplinen ist die Konzeption eines adaptierbaren Prozess- und Vorgehensmodells zur Erstellung einer Lernumgebung bestehend aus Lernobjekten und Komponenten die Aufgabenstellung dieser Arbeit.Mit den Grundlagen von webbasierten Lernumgebungen im ingenieur-wissenschaftlichen Bereich, E-Learning-Standards, Softwareentwicklungsprozessen und Datenbanktechnologien beschäftigt sich das zweite Kapitel. Bereits im Grundlagen¬kapitel wird die Idee eines Ebenenmodells für Lernumgebungen in Kombination mit einem speziellen Modell von Lernobjekten entwickelt.Das dritte Kapitel analysiert anhand eines Kriterienkataloges den Stand der Technik auf dem Gebiet webbasierter Lernumgebungen in einigen ingenieur-wissenschaftlichen Grund¬lagenfächern. Detailliert wird die aktuelle Situation in den Fächern Physik, Mathematik, Maschinenbau und Elektrotechnik analysiert. Daneben wird kurz auf Chemie und Medizin sowie den internationalen Sprachraum eingegangen. Die medientechnische Analyse und Konzeption eines adaptierbaren Prozess- und Vorgehensmodells für die Entwicklung webbasierter Lernumgebungen wird im vierten Kapitel beschrieben. Evolutionäres Prototyping und objektorientierter Entwurf stehen hier im Mittelpunkt eines Vorgehensmodells zur ebenenbasierten System- und Lern¬objektentwicklung.Das fünfte Kapitel schildert konkrete Umsetzungen der allgemeinen Konzeption an Beispielen aus GETsoft. Anschauliche Umsetzungen der Mediengestaltungskonzepte über¬führen die Theorie in die Praxis. Die Funktionalitäten und Schnittstellen der GETsoft-Datenbank für standardisierte wiederverwendbare Lernobjekte und ihre Meta¬daten stellen hier einen Schwerpunkt dar.Im Kapitel sechs werden Beispiele und Ansätze zum Transfer, der Vernetzung sowie zur Verbreiterung von GETsoft vorgestellt. Das letzte Kapitel stellt Überlegungen zu Erfolgsfaktoren von Lernumgebungen an, diskutiert kurz offene Wissensressourcen als Zukunftsmodell und bettet darüber Ideen zur Weiterentwicklung von GETsoft ein

    The ABC130 barrel module prototyping programme for the ATLAS strip tracker

    Full text link
    For the Phase-II Upgrade of the ATLAS Detector, its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100 % silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-25) and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests.Comment: 82 pages, 66 figure

    The ABC130 barrel module prototyping programme for the ATLAS strip tracker

    No full text
    For the Phase-II Upgrade of the ATLAS Detector [1], its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100% silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-250) [2,2] and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests
    corecore